记者12月23日从蚂蚁数科获悉,在中关村论坛系列活动第12届数字金融与科技金融大会上,蚂蚁数科的Deepfake(深度伪造)检测方案入选大会“金融科技技术创新与应用案例”。
蚂蚁数科依托旗下天玑实验室,业界首次构建了大规模、高质量、多模态的Deepfake数据集,其合成超过百万级多媒体内容,充分地模拟了真实世界金融风控环境中的Deepfake攻击样本,成为评测现有金融领域Deepfake检测模型性能的重要标准。在金融业务场景中,蚂蚁数科多组测试数据集上的 Deepfake 检测准确率达到了98%以上,并成功阻止了多起利用Deepfake技术进行的欺诈行为,保护了用户的资产安全。
该数据集解决了以往金融领域Deepfake检测模型无法大规模训练,无法在真实环境中测评的问题,并且从多模态分析角度促进了传统检测模型的发展。目前该数据集已经成为蚂蚁数科反深伪产品ZOLOZ Deeper对外服务客户的关键能力。
据了解,蚂蚁数科使用多达81种Deepfake技术生成高质量的合成图像,覆盖了多种伪造技术类型、复杂光照条件、背景环境和面部表情,以模拟复杂逼真的真实世界攻击环境。除了静态图像外,还收集并生成了大量包含声音的视频数据,包括100多种伪造技术类型,涵盖不同语种、口音和背景噪音更好的炒股配资,确保数据集的多样性和复杂性。